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Moment Problem for Effect Algebras 
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We present a solution to the moment problem for effect algebras, concerning 
mean values of all powers of an observable concentrated on the interval [0, 1] 
for states from a convex set. We give a solution for particular examples, e.g., for 
the set of all effect operators. We examine how this problem is related to a so- 
called E-property. Finally, we give a solution for observables studied in the 
operational approach to physical theories. 

1. INTRODUCTION 

The Hausdorff problem is the following: Given a set of real numbers 
{v.}.~0, find a bounded nondecreasing function u(t) on the interval [0, 1] 
such that for its moments we have 

v .  = tn du(t) ,  n_>O 

Equivalently, find a probability measure I~ on the Borel cr-algebra 9~([0, 1]) 
such that 

v . = I O  t"dl~(t), 
,ll 

n > O  
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Hausdorff (1921a, b, 1923) showed that the answer is positive iff 
{vn}n~0 is a so-called completely monotone sequence, i.e., for all n, k --- 0, 

( - 1 )  j vn+j >-- 0 
j=0 

For reviews of  these problems see, e.g., Shohat and Tamarkin (1943) 
and Widder (1946); for operators on Hilbert space some results are given in 
Riesz and Sg.-Nagy (1955). 

In the present paper, we extend this result for observables on effect 
algebras. These algebras have been recently introduced by Kbpka and Chova- 
nec (1994) (as difference posets), Giuntini and Greuling (1989) (as weak 
orthoalgebras), and Foulis and Bennett (1993) (as effect algebras). The effect 
algebras have been widely adopted as physical models generalizing the sys- 
tems of all effect operators on Hilbert space quantum mechanics (Beltrametti 
and Bugajski, n.d.). 

The solution to the moment problem is given in Section 3 for effects 
on a convex, order-determining set 90 of  (r-additive states on a (r-effect 
algebra; i.e., for affine fuzzy sets on ~.  

In Section 4 we present a solution, in a particular case for the set of all 
von Neumann operators of  Hilbert space quantum mechanics. In Section 5, 
we show how this problem is related to sets of  states having a so-called E- 
property in effect algebras. We introduce the class of  effect algebras which 
roughly speaking have the E-property, and we present examples of  convex 
effect algebras. 

Finally, in Section 6 we give a solution for observables (called here 
generalized observables) as affine mappings from a set of  states into the set 
of all probability measures on ~(R).  For this operational approach, we give 
an equivalent solution in an appropriate effect algebra (convex effect algebra) 
of affine fuzzy sets on a given set of states. 

2. E F F E C T  ALGEBRAS 

An effect algebra (Foulis and Bennett, 1993; Ktpka  and Chovanec, 
1994) is a set L with two particular elements 0, 1, and with a partial binary 
operation @): L • L -o L such that for all a, b, c E L we have: 

(EAi) 

(EAii) 

(EAiii) 

If a @ b ~ L, then b ~ a e L and a @) b = b �9 a 
(commutativity). 
I f b @ ) c  e L and a O (b @) c) ~ L, t h e n a O b  e L a n d ( a  
@) b) ~) c e L, and a @) (b ~ c) = (a �9 b) �9 c (associativity). 
For any a e L there is a unique b ~ L such that a ~9 b is 
defined, and a �9 b = 1 (orthocomplementation). 
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(EAiv) I f  1 ~) a is defined, then a = 0 (zero-one  law). 

I f  the assumptions o f  (EAii) are satisfied, we write a E) b ~) c for the 
element (a ~) b) ~) c = a ~ (b E) c) in L. As  usual, we shall write L = (L, 
~), 0, 1) for effect algebras. 

Let a and b be two elements o f  an effect algebra L. We say that (i) a 
is orthogonal  to b and write a / b iff a ~) b is defined in L; (ii) a is less 

than or  equal to b and write a -< b iff there exists an element c e L such 
that a _1_ c and a ~ c = b (in this case we also write b --- a); (iii) b is the 
or thocomplement  of  a iff b is a (unique) element o f  L such that b I a and 
a ~ b = 1 and it is written as a J-. I f  c = a E) b, we shall write a = c O b 
and b = a O a. 

Let F = {al . . . . .  an} be a finite sequence in L. Recursively, we define 

for n -> 3 

at ~]~ "'" ~ an : =  (at ~ "'" ~ an-t) ~ an (1) 

supposing that at ~ "'" ~ an-l  and (at �9 --- �9 an- l )  ~ an exist in L. From 
the associativity o f  ~ in D-posets we conclude that (1) is correctly defined. 
By definition we put at �9 "" �9 a n = at if  n = 1, and al �9 "'" �9 an = 0 
if n = 0. Then for  any permutation (i~ . . . . .  in) o f  (1 . . . . .  n) and any k with 
1 --< k --< n we have 

at ~) "'" ~) an = ai! ~) "'" ~) ai n (2) 

a l ~ ' " ~ a n  = ( a l O  

We say that a finite sequence 
if al �9 "-- E) an exists in L. In 
@i"=lai, defined via 

,'" 0 ak) ~ (ak+l ~ "'" ~ an) (3) 

F = {al . . . . .  an} in L is ~ - o r t h o g o n a l  
this case we say that F has a ~ - s u m ,  

ai = a~ @ --- @ a ,  (4) 
i=1 

It is clear that two elements a and b o f  L are orthogonal,  i.e., a • b, 
iff {a, b} is ~-or thogona l .  

An  arbitrary system G = {ai}iEt of  not necessarily different elements 
of  L is ~)-orthogonal  iff, for every finite subset F o f  L the system {ai}i~F is 
~)-orthogonal. I f  G = {ai}iE1 is ~)-orthogonal, so is any {ai}i~j for any J C 
I. An  ~ -o r thogona l  system G = {a i } id  of  L has a ~)-sum in L, written as 
~)iel ai, iff in L there exists the join 

~) ai := ~/ ~) a i ( 5 )  
i~l F i~F 

where F runs over  all finite subsets in L In this case, we also write ~ G : =  

~]~i~l di" 
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It is evident that if G = {al . . . . .  a,} is ~-orthogonal ,  then the ~ - s u m s  
defined by (4) and (5) coincide. 

We recall that if  G = { a i } i E i  and ai = a for infinitely many i's, a =  0 
whenever ~ G exists in L. Indeed, let ao = G G; then 

ao = aio (~ �9 a i = a G ao 
i~/~1i0} 

which gives a = 0. On the other hand, if G is only O-orthogonal, then a is 
not necessarily 0. 3 

We say that an effect algebra L is a or-effect algebra (complete effect 
algebra) if @i~i ai belongs to L for any countable (arbitrary) system {ai: i 

I} of O-orthogonal elements from L. 
Two prototypes of effect algebras are the following two examples. 

Example 2.1. The set %(/-/) of all Hermitian operators A on H such that 
O -< A < L where I is the identity operator on H, is an effect algebra; a 
partial ordering --- is defined via A < B iff (Ax, x) <-- (Bx, x), x ~ H, and C 
= A (~ B, C E %(H), iff (Ax, x) + (Bx, x) = (Cx, x), x E H. A system {Ai: 
i ~ I} from %(H) is (~-orthogonal iff E~EIAi ~ %(1-1) (where the convergence 
in the summation is, e.g., weak or strong) and then ~iE~Ai = ~.i~iA~. In 
addition, %(/-/) is a complete effect algebra which is not a lattice. 

This example, %(/-/), plays an important role in the unsharp measurement 
in quantum mechanics. 

Example 2.2. Let the closed interval [0, l] be ordered in the natural 
way, and, for two numbers a, b ~ [0, I], we define a @ b iff a + b < I 
and we put then a (~ b = a + b. Then [0, I] is a totally ordered, distributive 
lattice in that any (~-orthogonal system has the sum in it. We recall that {at} 
is (~)-orthogonal iff {at} is summable and ~t at ----- I; then (~s at = Et at. 

A real-valued mapping s on an effect algebra L is said to be a state 
if (i) s(1) = I, and (ii) s(a ~ b) = s(a) + s(b), a, b ~ L. It is clear that 
m(0) = 0. 

I f  for a state s: L ---> [0, 1] we have 

s ( ~  ai) = ~ s(ai) (6) 
i ~ l  i~ l  

whenever ~)i~idi exists in L, then s is said to be a ~-additive or completely 
additive state if  (6) holds for any countable or any index set L respectively. 

3 F o r e x a m p l  e , l e t l n , ~ : n - - > 0 l ,  w h e r e 0 <  1 < 2 < - ' .  < n < n  + 1 < . . .  < ( n  4- 1 ) <  
ri < -.. < 2 < 1 < 0. We define n • :=  ri, (ti) • :=  n for any n --> 0, and we put  m (3 n : =  
m + n for  all m, n --> 0, and n (3 n~ :=  (m --' n) if n --< m. Then  L = (L, (3, 0, 0) is an effect 
algebra. If  G = {ai}~=l, where  ai = 1, then G is (3-orthogonal,  but (3 G does not  exist in L. 
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A nonvoid system of  states 90 on L is said to be order determining if, 
for a, b ~ L, a --< b iff s(a) <-- s(b) for any s ~ 90. We denote by Con(90) 
and Con~(90) the convex hull and the or-convex hull of 9 ~ respectively. It is 
clear that 90 is order determining iff Con(90) is so, or, equivalently, iff Con~(90) 
is order determining. 

We say that two effect algebras L and P are isomorphic if there exists 
a one-to-one mapping ~b from L onto P such that ~b(1) = 1, and a E) b ~ L 
iff ~b(a) ~) dp(b) ~ P and ~b(a ~) b) = r ~) dp(b). If L and P are or- 
effect algebras (complete effect algebras), we assume in addition for any 
isomorphism r that it preserves all sums of  all countable (arbitrary) ~)- 
orthogonal systems in L. 

For or-effect algebras with an order-determining system of or-additive 
states we have the following representation (Dvure~enskij, 1993) via fuzzy 
set [in Dvure~enskij (1993) there are also representations for effect algebras 
or complete algebras]. We recall that if 1~ is a nonempty set, by 0a and In 
we understand the constant functions 0n(to) = 0 and In(to) = 1 for each to 

f t  For two fuzzy sets f and g of  1) we write f <-- g iff f(to) -- g(to) for 
any to E 1~ Similarly f + g and f - g are defined pointwise. 

Theorem 2.3. Let a system of fuzzy sets L C_ [0, 1] a, l-I ~ O,  satisfy 
the following conditions: 

(i) l a  e L. 
(ii) la  - f e L whenever f E L. 
(iii) if for a sequence {fi} from L with En= l fi  ~ L for any n --> 1, 

then Y~i~l f" E L. 

Then L = (L, ~), 0h la),  w h e r e f ~ )  g is defined if and only i f f  + g - l a  
(f,  g ~ L) and we p u t f ~ )  g = f + g, is a or-effect algebra. In addition, the 
system 90 = {so,: to E f I } ,  where so,: L ---, [0, 1] is defined via so,(f) := f(to), 
f ~ L, is an order-determining system of  or-additive states. 

Conversely, let L = (L, ~), 0, 1) be an arbitrary or-effect algebra with 
an order-determining system of a a-additive states 90. Then L is isomorphic 
with the system of  fuzzy sets E C_ [0, 1] s, where L = {~ ~ [0, 1]s: ~(s) := 
s(a), s ~ 90, a ~ L}, and L satisfies the conditions (i)-(iii). 

3. M O M E N T  P R O B L E M  A N D  O B S E R V A B L E S  

Let L be a or-effect algebra. By an observable of  L we mean any mapping 
x: ~(R)  --, L such that: 

(i) x ( R ) =  1. 



1946 Duchofi, Dvure~enskij, and de Lucia 

(ii) x ( U ~ t  El) = ~ = l  x(Ei) whenever Ei N Ej = 0 for i 4: j, Ei 
~(9~) for i --> 1. 

An observable x is bounded if  there is a bounded set C such that x(C) = 1. 
I f x  is an observable of  a tr-effect algebra L, then there is the least closed 

subset or(x) (called the spectrum of x) such that x(cr(x)) = 1. Indeed, let On 
and 02 be two open sets in R such that x(01) = 0 = x (O2) .  Then 

x(O 1 U 02) = x((O l \ 02) (3 (O 1 N 02) ~_J (02 \ Ol) ) 

= X(Ol \ 02) (~ x(O1 U 02) @x(O 2 \ Ol) = 0 

Hence x(fqn~n O.) = 0 for any sequence of open subsets {On} with x(On) = 
0 (n --> l). Hence, tr(x) = N{C:  x(C) = 1, C is closed} satisfies xOr(x)) = 
1, which is possible because the topology of R satisfies the second countabil- 
ity axiom. 

I f f  is a Borel function on R, t h e n f o  x: E ~ xf f - l (E) ) ,  E ~ ~(R) ,  is 
an observable of  L, too. In particular, i ffn(t)  = t", t e R (n -> 1), we denote 
x~ := fn ox. 

I f  x is an observable and s is a or-additive state on L, then sx: ~ (R)  --* 
[0, 1] defined via 

sx(E) = s(x(E)), E ~ ~ ( R )  

is a probability measure on ~ ( R )  and we denote by 

s(x) :=  Itr t dsx(t) 

the mean value of x in s whenever the right-hand side of  the former equation 
exists and is finite. Hence, 

s(x~) = IR t ds~n(t) = IR t" dsx(t) 

In what follows, we shall study observables concentrated on the interval 
[0, 1], i.e., observables x with x([0, 1]) = 1. Denote ~n := ~ ( R )  N [0, 1]. 

Let 5 ~ 4: O be a convex system of tr-additive states on L. A mapping 
f : ~  X ~(R)  --* [0, i] such that 

(i) given s e 5 ~ f ( s , . )  is a finitely additive measure on 9~(R); 
(ii) for any M ~ ~(R),f(Xsl + (1 -- h)s2, M) = hf(sl, M) + (1 - k) 

f(s2, M)whenever h E [0, 1] and sl, s2 E S~ 

is said to be the effect function on 9 ~ 
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We say that a convex  sys tem 50 of  o--additive states on L has the E- 
property on L (E for  "exis tence")  if, given an effect  function f on 50, for  any 
M ~ ~ ( R ) ,  there exists an e lement  x(M) e L such that 

f ( s ,  M) = s(x(M)), s ~ 50 

Let  an e [0, 1] ~~ for  n = 0, 1 . . . . .  We say that a sequence o f  functions 
{an}n%0 f rom [0, 1] ~r is completely monotone if, for any n, k -> 0, 1 . . . .  and 
any s E 50, we have 

( - 1 )  i an+j(s) >-- 0 
j=O 

Lemma 3.1. Let  x be an observable  on a o--effect algebra L, which is 
concentrated on [0, 1], and let 50 be a nonempty  set o f  a ~r-additive states 
on L. Define 

an(s) = r t ~ dsx(t), s ~ 50, n >-- O (7) 
Jt 0,1] 

Then {an}n%0 is a comple te ly  monotone  sequence of  functions f rom [0, 1] ~e. 

Proof  It fol lows f rom the simple observat ion 

~] ( -  l)J an+j(s) = ~] ( -  1) j t ~+j dsx(t) 
j=0  j=0 0,1] 

= ~ tn(1 - t) k dsx(t) >- 0 Q E D  
~t 0,11 

Theorem 3.2. Let L be a cr-effect algebra and let 5 ~ be a convex,  order-  
determining sys tem o f  or-additive states on L having the E-proper ty  on L. 
Let  {a,}n%0 be a comple te ly  monotone  sequence of  functions f rom [0, 1] ~e 
with ao(s) = 1, s e 50, and, for  any n, let 

an(hsl + (1 -- h)s2) = kan(sl) + (1 -- h)an(s2) 

for any h E [0, 1] and all Sl, s2 ~ 50. Then there is a unique observable  x 
and L concentrated on [0, 1 ] such that (7) holds. 

Proof  Let s E 50 be a f ixed cr-additive state. Since the sequence o f  real 
numbers  { a,(s)}n%0 is comple te ly  monotone,  according to the classical result 
o f  Hausdor f f  (1923), there is a unique probabil i ty measure  Ps on 9~ such that 

an(s) = ~ t n dps(t), n >-- 0 (8) 
J[ 0,1] 
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A function f :  ,90 • ~(R)  ~ [0, 1] defined via 

f ( s ,  M) = ps(M n [0, 1]), M E ~(R)  

is an effect function on 5 ~ . Indeed, 

1 = ao(s) = ~ t o dps(t) = ps([0, 1]) 
J [0,1] 

and other properties of effect functions are evident. 
The E-property implies that, for any M ~ ~(R),  there is an element 

x(M) ~ L such that 

p~(g  n [0, 1]) = s(x(M)), s ~ 5O (9) 

Since 5O is an order-determining system of o'-additive states, x(M) is 
determined uniquely by (9). 

We assert that the mapping x" M ~ x(M) is an observable on L. Indeed, 
it satisfies the property (i) of observables. Let now M = Ui~=lMi, where Mi 
n My = O for i =~ j,  and Mi ~ ~ (R) .  Put Fn = U'/=lMi for any n --> 1. Then 
x(Fn) = 0'[=1 x(Mi), and 

s(x(M) 0 x(Fn)) = s(x(MXF,,)) = ps((M~n)  N [0, 11) x, 0 

since any ps is a-additive on ~ t .  Hence, for any s E 5O, 
oo 

s(x(M)) = s( ~ x(Mi)) 
i = l  

so that x(M) = ~i~=l  x(gi). In addition, x([0, 1]) = 1 and x is the unique 
observable in question. QED 

4. M O M E N T  P R O B L E M  F O R  %(H) 

Let H be a real or complex Hilbert space. Denote by %(H) the set of 
all effect operators on H (see Example 2.1). If now T is a von Neumann 
operator on H, i.e., T is a Hermitian positive-trace operator on H with tr(T) 
= 1, then the mapping mr: fg(H) ~ [0, 1] defined via 

mr(A) := tr(TA), A ~ ~ (H)  (10) 

is a completely additive state on %(/-/). In particular, if ~b is a unit vector in 
H, then the mapping 

m~(A) := (A~b, ~b), A ~ %(H) (11) 

is a completely additive state on %(H). The Gleason theorem on %(H) says 
(Dvurecenskij, 1993) that if dim H --- 3, then any completely additive measure 
on %(H) is of the form (10). 
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Denote by Tr(H) and Trl(H) the sets of  all Hermitian trace operators 
and von Neumann operators on H, respectively. 

We recall that the space %(H) is important for unsharp measurement in 
quantum mechanics (Busch et al., 1991) because there is an intimate connec- 
tion between observables on %(H) and so-called POV-measures. 

We recall that a POV-measure is a mapping E: ~(R) ~ %(H) such that: 

(i) E(R) = I; 
(ii) E(Ui%l Mi) = ~i~=lE(Mi) for any sequence of disjoint sets {Mi} 

in ~(R);  

where the sum converges in the weak operator topology. We note that observ- 
ables on %(H) and POV-measures are the same things. 

Let ~b be a unit vector in H and let m,  be a state on %(H) defined by 
(11). Take an observable E(=  POV-measure) on %(H) concentrated on [0, 
1]. Then the expression fro, lit ~ dm,e(t), n >-- O, defines a Hermitian operator 
En from %(H), called the nth moment operator of  E, such that 

(Endp, ~) = ~ t ~ dm:oE(t) (12) 
Jt 0,11 

and the sequence {E~}~0 is completely monotone, i.e., for all integers n, k 
-->0, 

~ ( - 1 ) J  en+j ~ O (13) 
j=0 

where O is the null operator on H. 
We now show that the converse statement holds for completely monotone 

Hermitian operators, i.e., any such sequence from %(H) is a sequence of 
moment operators of some POV-measure. 

Theorem 4.1. Let L = %(/-/) and 9~ = 5~ := {mr: T e Trl(H)}. Then 
b ~ has the E-property on %(H). 

Proof. It is evident that S ~ is a convex, nonempty set of completely 
additive states on %(H). Let now f :  S ~ • ~ (R)  ~ [0, 1] be any effect function 
on 5 ~ and define, for any M e N(R), an affine functional fM: TrI(H) -'* [0, 
l] via fM(T) := f(mr,  M), T ~ TrI(H). This functional can be uniquely 
extended to a bounded linear functional ]M on the set Tr(H) with the norm 
IlfMII ~ 1. According to a representation theorem of bounded real-valued 
linear functionals on Tr(H), Theorem VI.26.b in Reed and Simon (1972), 
there is a unique Hermitian operator E(M) ~ %(/-/) such that 

fM(T) = tr(TE(M)), T ~ Tr(H) 
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This implies 

f u(T) = f(mr,  /14) = mr(E(M)) 

for any mr e 5 v. 

Theorem 4.2. Let {En}nL0 with E0 = I be a completely monotone 
sequence of effect operators on %(H). Then there is a unique POV-measure 
E concentrated on the interval [0, 1] such that En is the nth moment operator 
of E. 

Proof. For any unit vector 6 ~ H, the mapping T,: H ~ H defined as 
T,(O) := (t~, 6) 6, t~ ~ H, is avon Neumann operator on H, and we have that 

mr,(A) = (A6, 6), A ~ ~(H) 

i.e., mr,  = m,. It is clear that the set 5~ :=  {m,: 11611 = 1 } is an order- 
determining system of completely additive states, and Con~(~o) = ~(H), 
where 5e(H) is from Theorem 4.1. Since T = ~,ihiT, t,i, where ki > 0, Xihi = 
1, and 6i _1_ 6j for i =# j,  we have 

mr(En) = tr(TEn) = ~ h,(En6i, ~)i) 
i 

In view of complete monotonicity of the sequence of  Hermitian operators 
{ E n } n ~ = O ,  ~ oo {E~}n=O, where /~  E [0, 1] se is defined via 

/~(mr) : = tr(TE~), T E Tr(H), n --> 0 

is a completely monotome sequence of functions from [0, 1] se. Since 5e has 
the E-property, applying Theorem 3.2 to {/~n}~~ o, we obtain a unique observ- 
able (=  POV-measure) E: ~(R) ~ %(H), concentrated on [0, 1] such that 

E~(mr) = ~ t ~ dmrE(t), n >-- 0 
Jt 0,1] 

In particular, we have 

(E~6' 6) = I0. 11 t n d ( E ( t ) 6 " 6 ) = I O ,  ll tndm'e(t)" n>--O QED 

Let now ~(H) be the system of all orthogonal projections on H. Hence 
~E(H) C %(H), and ~(H) can be viewed as a complete orthomodular lattice 
with respect to the usual ordering of operators. In addition, P ~ Q -- P v 
Q = P + Q whenever P + Q -< I, and ~(H) is a complete effect algebra, 
too. Any observable x: ~(R)  ~ ~(H) can be understood as a special POV- 
measure, a so-called PV-measure. 
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A POV-measure E is a PV-measure iff E ( M  f)  N)  = P(M)P(N)  for any 
M, N e ~(R),  or, equivalently, if E(M) 2 = E(M) for any Borel subsets M. 

We recall that if E is a PV-measure, then for its nth moment operator 

E.  = ( t ~ dE(t), n >-- 0 (14) 
J 

we have 

E ~ = E 7  (15) 

Theorem 4.3. Let {E~}~%0 be a sequence of  effect operators from %(H) 
with Eo = L Then there is a unique PV-measure E concentrated on [0, 1] 
such that E~ is the nth moment operator of  E if and only if {E,},~176 is a 
completely monotone sequence and 

Proof. If E is a PV-measure on %(H), then the assertion of the theorem 
is true. Suppose the converse. Then from Theorem 4.2 we have the existence 
of a POV-measure E concentrated on the interval [0, 1] such that E~ is its 
nth operator moment. Using the Kadison result (Riesz and Sz-Nagy, 1955, 
p. 448; Kadison, 1952), i.e., E is a PV-measure iff E~l --< E2, we see that E 
is a PV-measure. QED 

Remark  4.4. It is worth noting that Riesz and Sz.-Nagy (1955, p. 445) 
proved also an analogue of the moment problem which can be formulated 
as follows: If {E,},~0 is a sequence of Hermitian operators on H with Eo = 
I such that aoEo + a~El + "'" + a,E~ >-- 0 whenever ao + a~t + . . .  + a~t ~ 
--> 0 for any t E [ - M ,  M] (a0, al . . . . .  a~ e R), then there is a POV-measure 
E concentrated on [ - M ,  M] such that E,  is its nth moment operator. 

5. EFFECT A L G E B R A S  A N D  E-PROPERTY 

In the present section, we give examples of  or-effect algebras having a 
non-empty, convex system of order-determining or-additive states for which 
the E-property holds, and also ones for which it fails. 

From Theorem 4.1 we know that for the most important example of 
effect algebras for quantum physics, %(H), the set of  all states corresponding 
to yon Neumann operators via (10) has the E-property in %(H). 

Example  5.1. Let L = [0, I] be ordered in the natural way (see Example 
2.2). Then the set of all states ~e = {So}, where So(t) = t, t ~ [0, 1], is order 
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determining. This state is also completely additive. Then be has the E-property 
in [0, 1]. 

Proof Let f :  5 ~ • ~(R)  ~ [0, 1] be an effect function. For any M 
~(R) we put x(M) = f(so, M); then So(x(M)) = x(M) = f(so, M). QED 

Example 5.2. Let [0, 1] 2 = [0, 1] • [0, 1] be the product of two copies 
of [0, 1]. Then [0, 1] 2 is a complete effect algebra, where (ul, Vl) (3 (u2, v2) 
is defined iff Ul (3 u2 and vl (3 v2 are defined in [0, 1]; then (u,, v0 (3 (u2, 
v2) := (Ul (3 uz, vl (3 v2). The space of all states on [0, 1] 2 is the set 9~ = 
{s,,: e t e  [0, 1]}, where s~,(u, v) := etu + (1 - et)v, (u, v) e [0, 1] 2, which 
is order determining. Any state is completely additive, and be has the E- 
property in [0, 1] 2. 

Proof Let f :  be • ~(R)  --* [0, 1] be an effect function. Given M 
~(R), we define 

x(g)  := (f(so, g ) ,  f (s l ,  M)) E [0, 1] 2 

Then 

s~(x(M)) = etf(so, M) + (1 - ot)f(sl, M) 

= f(otso + (1 - or)s1, M) = f(s~, M) QED 

Example 5.3. Let Ln = [0, 1]" be the product of n copies of [0, 1] (n 
--> 1). Then, similarly as in Example 5.2, L~ is a complete effect algebra, and 
the space of all states be = be(Ln) on L~ coincides with the set {S,~l...,~n: ai >- 
0, i = 1 . . . . .  n, Ei%l ct~ = 1 }, where S~r..~n(Ul . . . . .  u~) := ET=l otiui. Then 
be is order determining and has the E-property in Ln. 

Proof Let f be an effect function. Define x(M) = (ul . . . . .  u~), where 
ui = f(si, M), and si is an sat...13 ~ having 13i = 1. Then S~r..~n(X(M)) = 
f(s~l...~n, M), M ~ ~(R) .  QED 

Example 5.4. Let L = ~(H) be the system of all orthogonal projections 
on a Hilbert space H. According to the famous Gleason theorem (Dvure~en- 
sky, 1993) if dim H --> 3, any completely additive state on it is given by 
formula (10) restricted to ~(H). Then be(H) = {mr: T ~ Tr1(H)} does have, 
in general, the E-property in ~(H). 

Proof Let A be an effect operator which is no orthogonal projection, 
and let EA be its spectral measure. Define an effect function f on be(H) via 

f (mr,  M) := tr(TEA(M)), T ~ Tr,(H) 

Then this effect function has no solution in ~(H). QED 
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Example 5.5. Let LQ: [0, I] n Q, where Q is the set of all rational 
numbers. Then LQ is an effect algebra which is not a or-algebra. It possesses 
a unique state So, namely so(r) := r, r ~ LQ, which is a completely additive 
state. For the convex singleton {So} the E-property fails in LQ. 

Comparing Example 5.4 and Theorem 4.1, we see that for affinely 
isomorphic sets of completely additive states on %(H) and ~(H),  respectively, 
we have completely different situations with validity of the E-property on 
them. 

Let 9 0 be a nonvoid, convex set. An effect on 5e is any affine mapping 
f :  9 0 ~ [0, 1]. Denote by %(5 D) the set of all effects on 9 ~ Then %(5P) is a 
complete effect algebra under the usual addition when f ~ g is defined in 
%(9 ~) if and only i f f ( s )  + g(s) - 1 for any s ~ 9 ~ and (f~) g)(s) = f (s)  + 
g(s), with the least and greatest elements 0~e and l~e, respectively, and with 
a convex set of completely additive states 5~ := {~: s ~ 9 ~ where ~(f) = 
f(s),  f E ~g(5~ This set of states is order determining on ~g(9 ~ [compare 
with Theorem 2.3 and Dvure~enskij (n.d.)]. 

Let now L be a or-effect algebra with a convex, nonvoid, order-determin- 
ing set of o'-additive states 5 ~ Then L can be naturally embedded into %(5e): 
For any a E L we assign ~: 5e ~ [0, 1] as ~(s) := s(a), s E 5 ~ Motivated 
by this, a or-effect algebra L with a convex, order-determining system of or- 
additive states 5e ~e O is said to be a convex effect algebra if L can be 
embedded surjectively into %(5P). 4 

It is clear that %(5 ~ with 9 0 is always a convex effect algebra. 
The notion of convex effect algebras gives us the following by-product. 

Theorem 5.6. Let L be an effect algebra (or-effect algebra, complete 
effect algebra, respectively) with a nonvoid, convex set of states (or-additive 
states, completely additive states) 5e which is order determining. Then there 
is a complete effect algebra E with a convex system of completely additive 
states affinely isomorphic with 5r such that L can be embedded into E, and 
any state on L can be extended into a completely additive state on E. 

Proof. Using a fuzzy set representation [see Theorem 2.1 and Dvure~en- 
skij (n.d.)], any effect algebra (or-effect algebra, complete effect algebra) can 
be represented by fuzzy sets on 9 ~, more precisely by effects on 5r If we put 
E := %(~o), the set of all effects on 5e, we give the complete effect algebra 
in question. QED 

For example, ~(H) can be embedded into %(H) and LQ from Example 
5.5 into [0, 1]. 

4 A similar notion related to convex effect algebras, consistent effect algebras, has been recently 
introduced by Beltrametti and Bugajski (n.d.). 
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Theorem 5.7. Let L with a convex, nonvoid, order-determining set of  
cr-additive states 5~ :/: O be a convex effect algebra. Then 50 has the E- 
property in L. 

Proof  Let f :  5 ~ • ~ ( R )  --* [0, 1] be any effect function on 50. Then the 
function f ~ s )  := f ( s ,  M),  s ~ 50, is an effect on 50 for any M E ~(R).  
Hence there is an element x(M) ~ L such that fM = x(M) e %(50), and we have 

s(x(M)) = f M(S) = f(S,  M) 

for any s ~ 50. QED 

Examples %(H) with 50(H) (Theorem 4.1) and Examples 5.1-5.4 are 
examples of  convex effect algebras, while Example 5.4 is no convex effect 
algebra. 

Convex effect algebras give many examples of  o--effect algebras starting 
with a nonvoid convex abstract set 50. Roughly speaking, convex effect 
algebras are exactly effect algebras with a nonempty, convex system of states 
being order determining and having the E-property. In addition, those effect 
algebras have a fuzzy set-representation by effects. 

Theorem 5.8. Let  Li with 50i be a convex effect algebra (i = 1 . . . . .  n). 
Then L = LI • "'" • Ln, where ~ is defined pointwisely (see Examples 
5.3-5.4), is a convex effect algebra with a convex system of  or-additive states 

50 "~-- {(O[-IS 1 . . . . .  OLnSn): 0s ~ O, S i E 50i, ~ O[i = l }  
i=l  

where (alsl  . . . . .  a .s . ) (ul  . . . . .  Un) :=  Z?=l aiSi(Ui). 

Proof  First of  all, 50 is a convex, order-determining set of  cr-additive 
states on L. Let now f :  50 ~ [0, 1] be an effect on 50. Define fi: 50i ~ [0, 1] 
as follows: 

f,(si) : :  f((Osn . . . . .  lsi . . . . .  OSn)), S i E 50i 

Then f i  is an effect on 50i. Since Li is convex, there is an element ui E L i  
such that f ,{s) = ~(s)  = s(ui) for any s ~ 5~ any i = 1 . . . . .  n. Then, 
for the element u = (ul . . . . .  u,), we have 

(Ul . . . . .  Un)((Os . . . . .  OLnSn) ) = ( a l S  1 . . . . .  O~nSn)((U 1 . . . . .  Un)) 

: ~ OLiSi(Ui)= ~ oulfi(si) 
i=l i=l 

= ~ ~',f((Os1 . . . . .  ls  i . . . . .  OSn)) 
i=l  

= f((ansn . . . . .  oL.s.)) QED 
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Theorem 5.9. Let L i be a it-effect algebra with a convex order-determin- 
ing system Si of ~-additive states on L;, i = 1 . . . . .  n. Define the product 
effect algebra L = Ll • "'" • L~ (see Theorem 5.8). If any '~i has the E- 
property in Li, so has be from Theorem 5.8 in L. 

Proof  It follows the same ideas as the proof of Theorem 5.8. Let f :  be 
• ~(R)  --* [0, 1] be an effect function. Then fi: bei • ~ (R)  ~ [0, 1] defined via 

f i ( s i ,  M )  :=  f((Os I . . . . .  l s  i . . . . .  Osn) , g ) ,  s i E bei 

is an effect function on 9~ Then there is an element xi(M) ~ Li such that 
f ,(s ,  M) = s(xi(M)) for any s ~ bei, M ~(R).  Define x(M) = (Xl(M) . . . . .  
x~(M)). Then 

( a l s l  . . . . .  ans~)(x(g)) = • OtiSi(xi(M)) 
i=1 

Ot'tf i(si, M )  
i= I 

~ O['d'e((OSl . . . . .  l s i  . . . . .  OSn), M )  
i=l 

f((oqsl  . . . . .  ernst), i14) QED 

6. M O M E N T  P R O B L E M S  FOR GENERALIZED OBSERVABLES 

The natural notion of  observable as a o--homomorphism from ~(R)  into 
a or-effect algebra is generalized as follows in quantum physics. Let be be a 
set representing, in a given theoretical model, the set of  all or-additive states 
of the physical system under consideration. It is assumed that be is nonvoid 
and convex. Let ./tt(R) denote the set of  all probability measures on ~(R).  

By a generalized observable (to distinguish it from observables as cr- 
homomorphisms) we mean any affine mapping B: be --, .~t(R), i.e., B is an 
affine mapping from the convex set of  states into the family of probability 
measures on the space in which the observable takes values. It is also possible 
to take other measurable spaces, e.g., R n, ~(Rn),  etc. This approach has been 
widely adopted, e.g., by Beltrametti and Bugajski (1995a, b, 1996, nd). 

For any s E be and any M ~ ~(R),  we have a real number (Bs)(M) 
[0, 1]. Hence, we get an affine function BM(s) := (Bs)(M), s ~ be, which is 
an effect on be, i.e., BM ~ ~(be), where %(be) has been introduced in Section 5. 

If x: ~(R)  --' L, where L is any or-effect algebra with a nonempty, convex 
set of o'-additive states, then the mapping 

Bx: S ~  Sx, s ~ be 
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is a generalized observable. Therefore, any observable generates a generalized 
observable. If S 0 = Trl(H) and L = %(H), then an observable (=  POV- 
measure) and a generalized observable coincide. 

According to Beltrametti and Bugaj ski (1995b), we say that the spectrum 
of a generalized observable B, denoted by or(B), can be defined as the least 
closed set C such that Bc = l~e. Similarly, B is concentrated on M ~ ~(R)  
i fBM = 1~. 

If B is a generalized observable and g is any Borel function on R, then 
by g(B) we define a generalized observable g(B): s ,-. (Bs) o g- l ,  i.e., 
(g(B)s)(M) = (Bs)(g-l(M)), M E ~(R).  If gn(t) = t ~, t ~ R, we define B n 
:= gn(B), n >-- 1. 

The mean value of B in the state s E SO, written s(B), is defined as 

s(B) := fR t d((Bs)(t)) 

provided that the integral on the right-hand side of the former equality exists 
and is finite. Similarly we have 

s(B") := IR t d((B"s)(t)) = IR : d((Bs)(t)) 

Let now B be a generalized observable concentrated on the interval [0, 
1]. For any n ~ 0, we define an effect an on S ~ via 

an(s) = ( t" d((Bs)(t)), s ~ SO (16) 
J[ o,H 

Then the sequence {an}n%0 is completely monotone and any an is an affine 
mapping on SO, so that an ~ %(9 ~ for any n --> 0. 

We now present a solution to a moment problem for generalized 
observables. 

Theorem 6.1. Let SO be a convex, nonvoid set, and let {a,},~0 be a 
completely monotone sequence of effects on SO with ao(s) = 1 for any s 
SO. Then there is a unique generalized observable B: SO ~ ~ (R)  such that 
(16) holds. Equivalently, there is a convex effect algebra L(SO) with a convex, 
order-determining system of  or-additive states ~ which is affinely isomorphic 
to SO and a unique observable x: ~(R)  ~ L(SO) concentrated on [0, 1] such that 

an(s) = ( t n dgx(t), n >- O, s ~ SO (17) 
J[ 0,1] 

where ~ is a unique or-additive state on L(SO) corresponding in the affine 
ismorphism to s. 
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Proo f  (i) Fix an element s e 3,. Then the sequence of real numbers 
{an(s)}n~=o is completely monotone, and by a classical result of Hausdorff 
(1923), there is a unique probability measure p, on ~1 such that 

an(s) = Io, tl t" dp~(t), n --> 0 (18) 

i .e. ,  

Bs = Sx, s E 3' 

(Bs)(M) = s(x(M)), M ~ ~(R) 

This effect algebra is a convex effect algebra %(3,) defined in Section 5 
which consists of all affine fuzzy sets on 3,. 

Remark  6.3. Beltrametti and Bugajski (n.d., Theorem 1) showed a similar 
relation between generalized observables and observables to that in 
Remark 6.2. 

Define a mapping B: 90 --* ~t(R) via 

(Bs)(M) = ps(M f') [0, 1]), M ~ ~(R) (19) 

Since any an is an affine functional on 3,, we see that B defined via (19) is 
a generalized observable concentrated on [0, 1] satisfying (16). 

If Bt is another generalized observable concentrated on [0, 1] and satis- 
fying (16), then the uniqueness ofps on ~ l  in (18) gives B = Bi. 

(ii) Define L(3,) := %(3,), where %(3,) is the set all effects on 3,. Then 
L(3,) is a convex effect algebra with an order-determining system of o'- 
additive states ~ = {$: s e 3,}, where ~(f) := f ( s ) ,  f ~ L(3,), and the 
mapping s ~ ~ is an affine isomorphism between 3, and ~ .  

Let now B: 90 ~ AL(R) be a generalized observable from the first part 
of the present proof. Given M ~ ~ ( R ) ,  BM: s ~ (Bs)(M), s ~ 3,, gives an 
effect from L(3,) for which we have (a) Bo = O~e; (b) BR = l~e; and (c) 
Btu~ui) = ~i%l  Bui whenever {Mi},-is a sequence of disjoint Borel sets from 
9~(R). In other words, we have proved that the mapping x: M ~ BM is the 
observable in question for which (17) holds. 

The uniqueness of x follows easily from the uniqueness of B. QED 

Remark  6.2. As a by-product, we have proved in the former theorem 
that given a generalized observable B on the physical system with a convex, 
order-determining system of ~r-additive states 5~ 4: 0 ,  we can always find 
a complete effect algebra L(3,) with affinely isomorphic system of completely 
additive states which is order determining, and an observable x: ~(R) --* L(3,) 
such that 
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